X^2-19=-2x^2+106

Simple and best practice solution for X^2-19=-2x^2+106 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for X^2-19=-2x^2+106 equation:



X^2-19=-2X^2+106
We move all terms to the left:
X^2-19-(-2X^2+106)=0
We get rid of parentheses
X^2+2X^2-106-19=0
We add all the numbers together, and all the variables
3X^2-125=0
a = 3; b = 0; c = -125;
Δ = b2-4ac
Δ = 02-4·3·(-125)
Δ = 1500
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1500}=\sqrt{100*15}=\sqrt{100}*\sqrt{15}=10\sqrt{15}$
$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{15}}{2*3}=\frac{0-10\sqrt{15}}{6} =-\frac{10\sqrt{15}}{6} =-\frac{5\sqrt{15}}{3} $
$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{15}}{2*3}=\frac{0+10\sqrt{15}}{6} =\frac{10\sqrt{15}}{6} =\frac{5\sqrt{15}}{3} $

See similar equations:

| 68+-23s=873 | | 2(355-5a)=0 | | 15+4m=m | | n/20-351=-331 | | 2x=96x*6 | | -5n+7-4n=-11 | | -48;=12;p=66 | | n/20−351=-331 | | 5|x+7|-14=8 | | y/15-2=5 | | 2(3)+2y=14 | | u/9=-42 | | 3k-14k+25=2-6k-13 | | y/15−2=5 | | 2+4x+10=3x-2 | | -7j-8=8+9j | | 31=t/7+28 | | -4m-5-4=-29 | | 3(7+2x)+3=(5+x)-9(x+1) | | 2(-4+7x)=-148 | | 31=t7+ 28 | | 2x+100=158 | | -46=-x/7 | | 7(m+3)=9-(-7m-12) | | 4+5=5+x-4 | | 5x-2=4+3x-10 | | f-6/5=-1 | | 4a=4.8 | | 3x+4x+5=6x+11 | | 24x-24=12x+12 | | -105=-5n+7 | | 4+5=5+x-3 |

Equations solver categories